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Abstract
Segmentation of speech into phonemes is beneficial for
many spoken language processing applications. Here,
a novel method which uses auditory attention features
for detecting phoneme boundaries from acoustic signal
is proposed. The auditory attention model can success-
fully detect salient audio events/sounds in an acoustic
scene by capturing changes that make such salient events
perceptually different than their neighbours. There-
fore, it naturally offers an effective solution for seg-
mentation task. The proposed phoneme segmentation
method does not require transcription or acoustic mod-
els of phonemes. When evaluated on TIMIT, the pro-
posed method is shown to successfully predict phoneme
boundaries and outperform the recently published text-
independent phoneme segmentation methods [1, 2].
Index Terms: speech segmentation, phoneme boundary
detection, auditory attention model.

1. Introduction
Segmentation of continuous speech into phonemes is
beneficial for many applications including speech analy-
sis, automatic speech recognition (ASR) and speech syn-
thesis. However, manually determining phonetic tran-
scriptions and segmentations requires expert knowledge
and this process is laborious and expensive for large
databases. Thus, many automatic segmentation and la-
beling methods have been proposed in the past to tackle
this problem [1, 2, 3, 4, 5].

Phoneme segmentation methods can be grouped in
two main categories. The first group of methods requires
transcriptions and acoustic models of phonemes, and seg-
mentation task is simplified to the HMM-based forced-
alignment of speech with its transcription [3]. One of the
drawbacks of this approach is that it assumes the avail-
ability of the phonetic transcription. When the transcrip-
tion is not available, one may consider using a phoneme
recognizer for the segmentation. However, speech recog-
nition techniques like HMMs cannot place phone bound-
aries accurately since they are optimized for the correct
identification of the phone sequence [4]. Also, when
there is mismatch between the trained acoustic models
and the test utterance due to noise conditions, speaking
style, and speaker traits (e.g., adult vs. kids), the segmen-
tation performance can drastically degrade.

The second group of methods does not require any
prior knowledge of transcription or acoustic models of
phonemes. The method proposed here falls under this
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Figure 1: A spectrum of a sample speech segment with
transcription “his captain was” containing phonemes:
/hh/, /ih/,/z/, /kcl/, /k/, /ae/, /pcl/, /t/, /ix/, /n/, /w/, /ax/, and
/s/. Vertical white bars indicate approximate phoneme
boundaries.

category. Most of the approaches in this category focused
on change point detection for phoneme segmentation. For
example, [1] assumed that the maximum spectral tran-
sition positions correspond to phoneme boundaries and
[5] used maximum margin clustering to locate phoneme
boundaries. Differently, [2] proposed a probabilistic ap-
proach using an objective function derived from informa-
tion rate distortion theory. MFCC features were used for
phoneme segmentation in [1, 2, 5].

In our previous work, a bottom-up saliency-driven
auditory attention model was proposed and the model
could successfully detect salient audio events/sounds in
an acoustic scene by capturing changes that make such
salient events perceptually different than their neighbours
[6, 7]. Recently, auditory attention features were success-
fully used to find boundaries between syllable nuclei and
consonants surrounding it [8]. Hence, the auditory atten-
tion model is found to be very effective for change point
detection in different tasks.

In this study, a novel method that uses auditory at-
tention cues for phoneme segmentation of speech is pro-
posed. Our motivation for the proposed method is as fol-
lows: in a speech spectrum, one can usually see edges
and local discontinuities around phoneme boundaries; es-
pecially around vowels since they exhibit high energy
and clear formant structure. For example, in Fig 1, the
spectrum of a speech segment which is transcribed as
“his captain was” is shown together with approximate
phoneme boundaries. In the spectrum, one can visu-
ally observe some of these boundaries that correspond to
phoneme boundaries such as the boundaries for vowels
ih, ae, ix etc. Hence, we believe that by detecting the
relevant oriented edges and discontinuities in the audi-
tory spectrum; i.e. as done visually, phoneme segments
and/or boundaries in speech can be located.



Figure 2: Auditory Attention Model and Gist Extraction

In the auditory attention model, the auditory spectrum
is analogous to an image of a scene in vision and con-
trast features are extracted from the spectrum in multi-
scales using 2D spectro-temporal receptive filters. The
extracted features are tuned to different local oriented
edges: i.e., frequency contrast features are tuned to local
horizontally oriented edges, which are good for detect-
ing and capturing formants and their changes [8]. Next,
low level auditory gist features are obtained and a neural
network is used to discover the relevant oriented edges
and to learn the mapping between the gist features and
phoneme boundaries.

The rest of the paper is organized as follows. The au-
ditory attention model and features are explained in Sec-
tion 2, which is followed by experiments and a discussion
in Section 3-4. A conclusion is presented in Section 5.

2. Auditory Attention Model
The block diagram of the auditory attention model is
shown in Fig 2. The model is biologically inspired and
hence mimics the processing stages in the human audi-
tory system. First, the auditory spectrum of the input
sound is computed based on early stages of the human
auditory system, which consists of cochlear filtering, in-
ner hair cell, and lateral inhibitory stages, mimicking the
process from basilar membrane to the cochlear nucleus
in the auditory system [6]. The cochlear filtering is im-
plemented using a bank of 128 overlapping constant-Q
asymmetric band-pass filters with center frequencies that
are uniformly distributed along a logarithmic frequency
axis. For analysis, audio frames of 25 milliseconds (ms)

with 6.25 ms shift are used, i.e. each 6.25 ms audio
frame is represented by a 128 dimensional vector to have
enough resolution for phoneme boundary detection.

In the next stage, multi-scale features, which consist
of intensity (I), frequency contrast (F ), temporal contrast
(T ), andorientation (Oθ) with θ = {45o, 135o}, are ex-
tracted from the auditory spectrum based on the process-
ing stages in the central auditory system [6, 9]. These
features are extracted using 2D spectro-temporal recep-
tive filters mimicking the analysis stages in the primary
auditory cortex. Each of the receptive filters (RF) simu-
lated for feature extraction is illustrated with gray scaled
images in Fig 2 next to its corresponding feature. The ex-
citation phase and inhibition phase are shown with white
and black color, respectively. For example,F filter corre-
sponds to receptive fields in the primary auditory cortex
with an excitatory phase and simultaneous symmetric in-
hibitory side bands. Each of these filters is capable of
detecting and capturing certain changes in signal char-
acteristics. For example,F is capable of detecting and
capturing changes along the spectral axis, whereasOθ is
capable of capturing and detecting moving ripples (i.e.
raising and falling curves). One important point is that in
the model contrast features are computed, which is cru-
cial for change point detection and segmentation.

The RF for I has only an excitation phase and is
implemented using a 2D Gaussian kernel. The RF for
F, T,Oθ is implemented using 2D Gabor filters with an-
gles0o, 90o, {45o, 135o}, respectively. The multi-scale
features are obtained using a dyadic pyramid: the input
spectrum is filtered and decimated by a factor of two, and
this is repeated. Finally, eight scales are created (if the
window is larger than 0.8 ms; otherwise there are fewer
scales), yielding size reduction factors ranging from 1:1
(scale 1) to 1:128 (scale 8). For details of the feature ex-
traction and filters, one may refer to [6, 9].

After multi-scale features are obtained, the “center-
surround” differences are computed by comparing a
“center” fine scalec with “surround” coarser scales,
yielding a feature mapM(c, s):

M(c, s) = |M(c)	M(s)|, Mε{I, F, T,Oθ} (1)

The center-surround operation mimics the properties of
local cortical inhibition and detects local temporal and
spatial discontinuities. The across scale subtraction
(	) between two scales is computed by interpolation to
the finer scale and point-wise subtraction. Here,c =
{2, 3, 4}, s = c + δ with δε{3, 4}, which results in 30
feature maps when there are 8 scales.

Next, an “auditory gist” vector is extracted from the
feature maps ofI, F , T ,Oθ such that it covers the whole
scene at low resolution. To do that, each feature map is
divided intom-by-n grid of sub-regions and mean of each
sub-region is computed to capture the overall properties
of the map. For a feature mapMi with heighth and
widthw, the computation of feature can be written as:
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wherek = {0, · · · , n − 1}, l = {0, · · · ,m − 1}, and
feature map indexi = {1, · · · , 30}. An example of gist
feature extraction withm = 4, n = 5 is shown in Fig 2,
where a4 × 5 = 20 dimensional vector represents a fea-
ture map. After extracting a gist vector from each feature
map, we obtain the cumulative gist vector by augmenting
them. Then, principal component analysis (PCA) is used
to remove redundancy and to reduce the dimension.

3. Experiments and Results
TIMIT database is used in automatic phoneme boundary
detection experiments since it contains phone boundaries
manually determined by experts. We used the official
train and test splits, which contain 1344 and 3696 ut-
terances with total of 50337 and 139214 between-phone
boundaries, respectively. In this section, phoneme bound-
ary detection results at frame-level for varying window
durationW , an analysis of auditory attention features,
and a comparison of phoneme segmentation results with
earlier work will be presented.

In the experiments, a 3-layer artificial neural network
(ANN) is used to learn the mapping between the audi-
tory gist features and phoneme boundaries. ANN hasD
inputs, (D + N)/2 hidden nodes andN output nodes,
whereD is the length of auditory gist vector after PCA di-
mension reduction when95% of the variance is retained,
andN = 2; i.e. boundary vs. non-boundary.

The auditory gist features are estimated every 12.5 ms
using a window of durationW that centers on the current
frame to capture the context. A 12.5 ms error margin is
allowed for detected phoneme boundaries. For example,
if there is a reference boundary at 130 ms, the auditory
gist features corresponding to the frames at 125 ms and
137.5 ms are both labeled as a boundary in the training
since there is no exact frame which corresponds to man-
ual label. During evaluation, frame/frames detected as a
boundary within 12.5 ms window of a reference boundary
is/are accepted correct. For the above example, detecting
a boundary for either frames located at 125 ms or 137.5
ms is accepted correct, when there is a reference phoneme
boundary at 130 ms. The excessive detected boundaries
are counted as insertions and having no detected bound-
ary for a reference one is counted as deletion.

First, the role of window durationW is investigated in
the experiments by varying duration from 62.5 ms, which
is approximately mean phoneme duration (µ = 76 ms),
up to 200 ms (≈ 3 × µ) to analyze the effect of neigh-
bouring left and right context on the performance. The
grid size determines the temporal and spectral resolution.
Different grid sizes are evaluated for auditory gist extrac-
tion for varying temporal and spectral resolution. It was
found that a grid size of16-by-10 performs well in this
task with a reasonable feature dimension. In Table 1, the

Table 1: Phoneme Boundary Detection Results at Frame-
Level for Varying Window Duration

W (ms) D Ac Pr Re Fs
62.5 47 86.49 77.84 66.99 72.0
125 77 86.75 77.67 67.33 72.13
200 117 85.37 75.37 63.05 68.67

Table 2: Phoneme Boundary Detection Results at Frame-
Level for Individual Feature withW = 125 ms

Feat. D Ac Pr Re Fs
I 38 83.90 74.56 56.34 64.18
F 29 81.43 74.97 42.78 54.48
T 47 86.72 77.12 68.68 72.65
O 32 80.0 72.44 38.29 50.10

IFTO 77 86.75 77.67 67.33 72.13

frame-level phoneme boundary detection results in terms
of Accuracy (Ac), Precision (Pe), Recall (Re), and F-
score (Fs), for varying window duration are presented to-
gether with the corresponding auditory gist dimensionD.
The boundary detection performance is lower for longer
window duration since it causes missing phoneme bound-
aries; i.e. whenW = 200 ms recall is lower. The best
performance achieved is 86.75% phoneme boundary de-
tection accuracy at frame-level withW = 125 ms.

Second, the contribution of each featureI,F , T ,O in
the attention model is presented in Table 2 forW = 125
ms. All of the features individually perform well above
the chance level, which is 69.8% (obtained by labeling
all frames with the majority class). The most informative
feature about phoneme boundary detection istemporal
contrast (T), which achieves 86.72% phoneme boundary
detection accuracy at frame-level. However, the highest
accuracy is achieved with the combined featuresIFTO.
The high performance achieved with temporal contrast
features can be attributed to the fact that they are detect-
ing temporal changes in the auditory spectrum.

We cannot directly compare our results with the re-
sults reported in the literature due to differences in the pa-
rameters, evaluation metrics, data sets used in the exper-
iments, etc. In the literature, the work on phoneme seg-
mentation has focused on detection at segment/phoneme
level whereas here a more detailed frame-level results are
presented. For comparison with the recently published
work in the literature, experiments are also conducted
with 10 ms frame shift and phoneme level results are ob-
tained as in [1, 2]. For each frame, the ANN returns a
value between[0, 1], which can be thought asP (B|f),
the posterior probability of a frame being a phoneme
boundary,B, given auditory gist features,f . The ANN
output score is used for generating a one-dimensional
curve as a function of time,Pt(B|f) and a peak search
is performed on the curve to locate local maxima. Fi-
nally, peaks that are larger than a threshold are used to
locate phoneme boundaries.

Figure 3 presents results for the sample speech seg-
ment shown in Fig 1. The first plot at the top dis-
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Figure 3: Phoneme segmentation results for the sample
in Fig 1. “circle”, “cross”, and “diamond” signs indicate
matched, missed, and inserted boundaries, respectively.

Table 3: Comparison of Phoneme Segmentation Methods
Method Re Pr Fs

Dusan et al [1] 75.2 72.73 73.94
Quiao et al [2] 77.5 78.76 78.13

Attention Cues 81.77 84.32 83.02

plays speech waveform with manually placed phoneme
boundaries. The second plot displaysPt(B|f). When
the threshold was set to 0.2, the method detects most of
phoneme boundaries within 20 ms of reference bound-
aries. However, it misses the boundaries between silence
and /hh/, stop closure /pcl/ and /t/, and inserts a false
boundary at 1.23 s.

For scoring, a time-alignment between the detected
phoneme boundaries and the reference ones is used.
However, as done in [1], first, manual phoneme bound-
aries are converted to the closest adjacent frame positions
since there is not always an exact corresponding frame to
a manual boundary due to the frame shift size. Then, if
a peak is detected within 20 ms window of a reference
phoneme boundary, it is accepted as correct. Here, no
peak could validate more than one reference phoneme
boundary; i.e. in Fig. 3, the boundary between /pcl/
and /t/ was considered as missed even though the peak
at 1.11 s is within 20 ms. The excessive detected peaks
are counted as insertions, and having no detected peak for
a reference phoneme boundary is counted as a deletion.

Phoneme segmentation results are given in Table 3
along with the state-of-the art (to the best of our knowl-
edge) results reported in [1, 2] on TIMIT. The auditory
attention features can detect 81.77% of phoneme bound-
aries with 84.32% precision. The results from Table 3
show that the proposed method with auditory attention
features performs better than [1, 2].

4. Discussion
In this section, we compare three variables, namely win-
dow duration, grid size, and features, analysed in this
study for phoneme segmentation and in [8] for syllable
segmentation. The best performance achieved in syllable
segmentation and phoneme segmentation was with 400

ms and 125 ms windows, respectively. It is interesting
to note that in both tasks,the best performing window
is approximately twice the mean duration of segment,
where a segment is syllable or phoneme. This indicates
that left and right neighbouring context helps in segmen-
tation task. Second, phoneme segmentation requires a
larger grid size (16-by-10) compared to syllable segmen-
tation (4-by-10) which indicates that phoneme segmen-
tation needs higher resolution as one expects. Finally,
an analysis of attention features showed that the most in-
formative feature isF for syllable segmentation andT
for phoneme segmentation. One possible explanation for
this is that frequency contrast feature is more discrimi-
native for finding boundaries between vowels and con-
sonants surrounding them, whereas temporal changes in
the spectrum are more informative for finding boundaries
between phonemes.

5. Conclusion and Future Work
In this paper, biologically inspired auditory attention cues
are proposed for phoneme segmentation of continuous
speech. A neural network is used to learn the mapping
between phoneme boundaries and auditory attention fea-
tures. The proposed method achieves 86.8% phoneme
boundary detection accuracy at frame-level when tested
on TIMIT. At phoneme level, it is shown that the pro-
posed method outperforms the recently published text-
independent phoneme segmentation methods in [1, 2].

During error analysis, it is found that most of the
missed phone boundaries occur during transitions from
stops to vowels. As part of future work, we will investi-
gate using phone classes as side information during seg-
mentation to obtain further improvement. We also plan to
conduct experiments in other languages, speaking styles,
and noise conditions.
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